3.4.59 \(\int \frac {\sqrt {d+e x^2}}{x^3 (a+b x^2+c x^4)} \, dx\) [359]

Optimal. Leaf size=382 \[ -\frac {\sqrt {d+e x^2}}{2 a x^2}+\frac {e \tanh ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d}}\right )}{2 a \sqrt {d}}+\frac {(b d-a e) \tanh ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d}}\right )}{a^2 \sqrt {d}}-\frac {\sqrt {c} \left (b^2 d-2 a c d-a b e+\sqrt {b^2-4 a c} (b d-a e)\right ) \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x^2}}{\sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e}}\right )}{\sqrt {2} a^2 \sqrt {b^2-4 a c} \sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e}}+\frac {\sqrt {c} \left (b^2 d-b \left (\sqrt {b^2-4 a c} d+a e\right )-a \left (2 c d-\sqrt {b^2-4 a c} e\right )\right ) \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x^2}}{\sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}}\right )}{\sqrt {2} a^2 \sqrt {b^2-4 a c} \sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}} \]

[Out]

1/2*e*arctanh((e*x^2+d)^(1/2)/d^(1/2))/a/d^(1/2)+(-a*e+b*d)*arctanh((e*x^2+d)^(1/2)/d^(1/2))/a^2/d^(1/2)-1/2*(
e*x^2+d)^(1/2)/a/x^2-1/2*arctanh(2^(1/2)*c^(1/2)*(e*x^2+d)^(1/2)/(2*c*d-e*(b-(-4*a*c+b^2)^(1/2)))^(1/2))*c^(1/
2)*(b^2*d-2*a*c*d-a*b*e+(-a*e+b*d)*(-4*a*c+b^2)^(1/2))/a^2*2^(1/2)/(-4*a*c+b^2)^(1/2)/(2*c*d-e*(b-(-4*a*c+b^2)
^(1/2)))^(1/2)+1/2*arctanh(2^(1/2)*c^(1/2)*(e*x^2+d)^(1/2)/(2*c*d-e*(b+(-4*a*c+b^2)^(1/2)))^(1/2))*c^(1/2)*(b^
2*d-2*a*c*d-a*b*e-(-a*e+b*d)*(-4*a*c+b^2)^(1/2))/a^2*2^(1/2)/(-4*a*c+b^2)^(1/2)/(2*c*d-e*(b+(-4*a*c+b^2)^(1/2)
))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 2.76, antiderivative size = 370, normalized size of antiderivative = 0.97, number of steps used = 10, number of rules used = 7, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.241, Rules used = {1265, 911, 1301, 205, 212, 1180, 214} \begin {gather*} -\frac {\sqrt {c} \left (\sqrt {b^2-4 a c} (b d-a e)-a b e-2 a c d+b^2 d\right ) \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x^2}}{\sqrt {2 c d-e \left (b-\sqrt {b^2-4 a c}\right )}}\right )}{\sqrt {2} a^2 \sqrt {b^2-4 a c} \sqrt {2 c d-e \left (b-\sqrt {b^2-4 a c}\right )}}+\frac {\sqrt {c} \left (-\sqrt {b^2-4 a c} (b d-a e)-a b e-2 a c d+b^2 d\right ) \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x^2}}{\sqrt {2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}\right )}{\sqrt {2} a^2 \sqrt {b^2-4 a c} \sqrt {2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}+\frac {(b d-a e) \tanh ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d}}\right )}{a^2 \sqrt {d}}-\frac {\sqrt {d+e x^2}}{2 a x^2}+\frac {e \tanh ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d}}\right )}{2 a \sqrt {d}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[d + e*x^2]/(x^3*(a + b*x^2 + c*x^4)),x]

[Out]

-1/2*Sqrt[d + e*x^2]/(a*x^2) + (e*ArcTanh[Sqrt[d + e*x^2]/Sqrt[d]])/(2*a*Sqrt[d]) + ((b*d - a*e)*ArcTanh[Sqrt[
d + e*x^2]/Sqrt[d]])/(a^2*Sqrt[d]) - (Sqrt[c]*(b^2*d - 2*a*c*d - a*b*e + Sqrt[b^2 - 4*a*c]*(b*d - a*e))*ArcTan
h[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x^2])/Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]])/(Sqrt[2]*a^2*Sqrt[b^2 - 4*a*c]*S
qrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]) + (Sqrt[c]*(b^2*d - 2*a*c*d - a*b*e - Sqrt[b^2 - 4*a*c]*(b*d - a*e))*A
rcTanh[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x^2])/Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e]])/(Sqrt[2]*a^2*Sqrt[b^2 - 4*a
*c]*Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e])

Rule 205

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-x)*((a + b*x^n)^(p + 1)/(a*n*(p + 1))), x] + Dist[(n*(p
 + 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (
IntegerQ[2*p] || (n == 2 && IntegerQ[4*p]) || (n == 2 && IntegerQ[3*p]) || Denominator[p + 1/n] < Denominator[
p])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 911

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :
> With[{q = Denominator[m]}, Dist[q/e, Subst[Int[x^(q*(m + 1) - 1)*((e*f - d*g)/e + g*(x^q/e))^n*((c*d^2 - b*d
*e + a*e^2)/e^2 - (2*c*d - b*e)*(x^q/e^2) + c*(x^(2*q)/e^2))^p, x], x, (d + e*x)^(1/q)], x]] /; FreeQ[{a, b, c
, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegersQ[n,
 p] && FractionQ[m]

Rule 1180

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 1265

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2,
Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] &&
 IntegerQ[(m - 1)/2]

Rule 1301

Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.))/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Int[Ex
pandIntegrand[(f*x)^m*((d + e*x^2)^q/(a + b*x^2 + c*x^4)), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b^
2 - 4*a*c, 0] && IntegerQ[q] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {\sqrt {d+e x^2}}{x^3 \left (a+b x^2+c x^4\right )} \, dx &=\frac {1}{2} \text {Subst}\left (\int \frac {\sqrt {d+e x}}{x^2 \left (a+b x+c x^2\right )} \, dx,x,x^2\right )\\ &=\frac {\text {Subst}\left (\int \frac {x^2}{\left (-\frac {d}{e}+\frac {x^2}{e}\right )^2 \left (\frac {c d^2-b d e+a e^2}{e^2}-\frac {(2 c d-b e) x^2}{e^2}+\frac {c x^4}{e^2}\right )} \, dx,x,\sqrt {d+e x^2}\right )}{e}\\ &=\frac {\text {Subst}\left (\int \left (\frac {d e^2}{a \left (d-x^2\right )^2}-\frac {e (-b d+a e)}{a^2 \left (d-x^2\right )}+\frac {e \left (-b \left (c d^2-b d e+a e^2\right )+c (b d-a e) x^2\right )}{a^2 \left (c d^2-b d e+a e^2-(2 c d-b e) x^2+c x^4\right )}\right ) \, dx,x,\sqrt {d+e x^2}\right )}{e}\\ &=\frac {\text {Subst}\left (\int \frac {-b \left (c d^2-b d e+a e^2\right )+c (b d-a e) x^2}{c d^2-b d e+a e^2+(-2 c d+b e) x^2+c x^4} \, dx,x,\sqrt {d+e x^2}\right )}{a^2}+\frac {(d e) \text {Subst}\left (\int \frac {1}{\left (d-x^2\right )^2} \, dx,x,\sqrt {d+e x^2}\right )}{a}+\frac {(b d-a e) \text {Subst}\left (\int \frac {1}{d-x^2} \, dx,x,\sqrt {d+e x^2}\right )}{a^2}\\ &=-\frac {\sqrt {d+e x^2}}{2 a x^2}+\frac {(b d-a e) \tanh ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d}}\right )}{a^2 \sqrt {d}}+\frac {e \text {Subst}\left (\int \frac {1}{d-x^2} \, dx,x,\sqrt {d+e x^2}\right )}{2 a}-\frac {\left (c \left (b^2 d-2 a c d-a b e-\sqrt {b^2-4 a c} (b d-a e)\right )\right ) \text {Subst}\left (\int \frac {1}{\frac {1}{2} \sqrt {b^2-4 a c} e+\frac {1}{2} (-2 c d+b e)+c x^2} \, dx,x,\sqrt {d+e x^2}\right )}{2 a^2 \sqrt {b^2-4 a c}}+\frac {\left (c \left (b^2 d-2 a c d-a b e+\sqrt {b^2-4 a c} (b d-a e)\right )\right ) \text {Subst}\left (\int \frac {1}{-\frac {1}{2} \sqrt {b^2-4 a c} e+\frac {1}{2} (-2 c d+b e)+c x^2} \, dx,x,\sqrt {d+e x^2}\right )}{2 a^2 \sqrt {b^2-4 a c}}\\ &=-\frac {\sqrt {d+e x^2}}{2 a x^2}+\frac {e \tanh ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d}}\right )}{2 a \sqrt {d}}+\frac {(b d-a e) \tanh ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d}}\right )}{a^2 \sqrt {d}}-\frac {\sqrt {c} \left (b^2 d-2 a c d-a b e+\sqrt {b^2-4 a c} (b d-a e)\right ) \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x^2}}{\sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e}}\right )}{\sqrt {2} a^2 \sqrt {b^2-4 a c} \sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e}}+\frac {\sqrt {c} \left (b^2 d-2 a c d-a b e-\sqrt {b^2-4 a c} (b d-a e)\right ) \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x^2}}{\sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}}\right )}{\sqrt {2} a^2 \sqrt {b^2-4 a c} \sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.19, size = 348, normalized size = 0.91 \begin {gather*} \frac {-\frac {a \sqrt {d+e x^2}}{x^2}+\frac {\sqrt {2} \sqrt {c} \left (b^2 d-2 a c d+b \sqrt {b^2-4 a c} d-a b e-a \sqrt {b^2-4 a c} e\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x^2}}{\sqrt {-2 c d+b e-\sqrt {b^2-4 a c} e}}\right )}{\sqrt {b^2-4 a c} \sqrt {-2 c d+\left (b-\sqrt {b^2-4 a c}\right ) e}}+\frac {\sqrt {2} \sqrt {c} \left (-b^2 d+2 a c d+b \sqrt {b^2-4 a c} d+a b e-a \sqrt {b^2-4 a c} e\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x^2}}{\sqrt {-2 c d+\left (b+\sqrt {b^2-4 a c}\right ) e}}\right )}{\sqrt {b^2-4 a c} \sqrt {-2 c d+\left (b+\sqrt {b^2-4 a c}\right ) e}}+\frac {(2 b d-a e) \tanh ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d}}\right )}{\sqrt {d}}}{2 a^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[d + e*x^2]/(x^3*(a + b*x^2 + c*x^4)),x]

[Out]

(-((a*Sqrt[d + e*x^2])/x^2) + (Sqrt[2]*Sqrt[c]*(b^2*d - 2*a*c*d + b*Sqrt[b^2 - 4*a*c]*d - a*b*e - a*Sqrt[b^2 -
 4*a*c]*e)*ArcTan[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x^2])/Sqrt[-2*c*d + b*e - Sqrt[b^2 - 4*a*c]*e]])/(Sqrt[b^2 - 4*a
*c]*Sqrt[-2*c*d + (b - Sqrt[b^2 - 4*a*c])*e]) + (Sqrt[2]*Sqrt[c]*(-(b^2*d) + 2*a*c*d + b*Sqrt[b^2 - 4*a*c]*d +
 a*b*e - a*Sqrt[b^2 - 4*a*c]*e)*ArcTan[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x^2])/Sqrt[-2*c*d + (b + Sqrt[b^2 - 4*a*c])
*e]])/(Sqrt[b^2 - 4*a*c]*Sqrt[-2*c*d + (b + Sqrt[b^2 - 4*a*c])*e]) + ((2*b*d - a*e)*ArcTanh[Sqrt[d + e*x^2]/Sq
rt[d]])/Sqrt[d])/(2*a^2)

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 0.16, size = 404, normalized size = 1.06

method result size
risch \(-\frac {\sqrt {e \,x^{2}+d}}{2 a \,x^{2}}-\frac {\ln \left (\frac {2 d +2 \sqrt {d}\, \sqrt {e \,x^{2}+d}}{x}\right ) e}{2 a \sqrt {d}}+\frac {\sqrt {d}\, \ln \left (\frac {2 d +2 \sqrt {d}\, \sqrt {e \,x^{2}+d}}{x}\right ) b}{a^{2}}-\frac {\munderset {\textit {\_R} =\RootOf \left (c \,\textit {\_Z}^{8}+\left (4 e b -4 c d \right ) \textit {\_Z}^{6}+\left (16 a \,e^{2}-8 d e b +6 c \,d^{2}\right ) \textit {\_Z}^{4}+\left (4 d^{2} e b -4 c \,d^{3}\right ) \textit {\_Z}^{2}+d^{4} c \right )}{\sum }\frac {\left (c \left (a e -b d \right ) \textit {\_R}^{6}+\left (4 a b \,e^{2}+a c d e -4 b^{2} d e +3 b c \,d^{2}\right ) \textit {\_R}^{4}+d \left (-4 a b \,e^{2}-a c d e +4 b^{2} d e -3 b c \,d^{2}\right ) \textit {\_R}^{2}-a c \,d^{3} e +c \,d^{4} b \right ) \ln \left (\sqrt {e \,x^{2}+d}-\sqrt {e}\, x -\textit {\_R} \right )}{\textit {\_R}^{7} c +3 \textit {\_R}^{5} b e -3 \textit {\_R}^{5} c d +8 \textit {\_R}^{3} a \,e^{2}-4 \textit {\_R}^{3} b d e +3 \textit {\_R}^{3} c \,d^{2}+\textit {\_R} b \,d^{2} e -\textit {\_R} c \,d^{3}}}{4 a^{2}}\) \(330\)
default \(-\frac {-\frac {b \left (\sqrt {e \,x^{2}+d}-\sqrt {e}\, x \right )}{2}-\frac {\left (\munderset {\textit {\_R} =\RootOf \left (c \,\textit {\_Z}^{8}+\left (4 e b -4 c d \right ) \textit {\_Z}^{6}+\left (16 a \,e^{2}-8 d e b +6 c \,d^{2}\right ) \textit {\_Z}^{4}+\left (4 d^{2} e b -4 c \,d^{3}\right ) \textit {\_Z}^{2}+d^{4} c \right )}{\sum }\frac {\left (c \left (-a e +b d \right ) \textit {\_R}^{6}+\left (-4 a b \,e^{2}-a c d e +4 b^{2} d e -3 b c \,d^{2}\right ) \textit {\_R}^{4}+d \left (4 a b \,e^{2}+a c d e -4 b^{2} d e +3 b c \,d^{2}\right ) \textit {\_R}^{2}+a c \,d^{3} e -c \,d^{4} b \right ) \ln \left (\sqrt {e \,x^{2}+d}-\sqrt {e}\, x -\textit {\_R} \right )}{\textit {\_R}^{7} c +3 \textit {\_R}^{5} b e -3 \textit {\_R}^{5} c d +8 \textit {\_R}^{3} a \,e^{2}-4 \textit {\_R}^{3} b d e +3 \textit {\_R}^{3} c \,d^{2}+\textit {\_R} b \,d^{2} e -\textit {\_R} c \,d^{3}}\right )}{4}-\frac {b d}{2 \left (\sqrt {e \,x^{2}+d}-\sqrt {e}\, x \right )}}{a^{2}}+\frac {-\frac {\left (e \,x^{2}+d \right )^{\frac {3}{2}}}{2 d \,x^{2}}+\frac {e \left (\sqrt {e \,x^{2}+d}-\sqrt {d}\, \ln \left (\frac {2 d +2 \sqrt {d}\, \sqrt {e \,x^{2}+d}}{x}\right )\right )}{2 d}}{a}-\frac {b \left (\sqrt {e \,x^{2}+d}-\sqrt {d}\, \ln \left (\frac {2 d +2 \sqrt {d}\, \sqrt {e \,x^{2}+d}}{x}\right )\right )}{a^{2}}\) \(404\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)^(1/2)/x^3/(c*x^4+b*x^2+a),x,method=_RETURNVERBOSE)

[Out]

-1/a^2*(-1/2*b*((e*x^2+d)^(1/2)-e^(1/2)*x)-1/4*sum((c*(-a*e+b*d)*_R^6+(-4*a*b*e^2-a*c*d*e+4*b^2*d*e-3*b*c*d^2)
*_R^4+d*(4*a*b*e^2+a*c*d*e-4*b^2*d*e+3*b*c*d^2)*_R^2+a*c*d^3*e-c*d^4*b)/(_R^7*c+3*_R^5*b*e-3*_R^5*c*d+8*_R^3*a
*e^2-4*_R^3*b*d*e+3*_R^3*c*d^2+_R*b*d^2*e-_R*c*d^3)*ln((e*x^2+d)^(1/2)-e^(1/2)*x-_R),_R=RootOf(c*_Z^8+(4*b*e-4
*c*d)*_Z^6+(16*a*e^2-8*b*d*e+6*c*d^2)*_Z^4+(4*b*d^2*e-4*c*d^3)*_Z^2+d^4*c))-1/2*b*d/((e*x^2+d)^(1/2)-e^(1/2)*x
))+1/a*(-1/2/d/x^2*(e*x^2+d)^(3/2)+1/2*e/d*((e*x^2+d)^(1/2)-d^(1/2)*ln((2*d+2*d^(1/2)*(e*x^2+d)^(1/2))/x)))-b/
a^2*((e*x^2+d)^(1/2)-d^(1/2)*ln((2*d+2*d^(1/2)*(e*x^2+d)^(1/2))/x))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^(1/2)/x^3/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

integrate(sqrt(x^2*e + d)/((c*x^4 + b*x^2 + a)*x^3), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^(1/2)/x^3/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {d + e x^{2}}}{x^{3} \left (a + b x^{2} + c x^{4}\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)**(1/2)/x**3/(c*x**4+b*x**2+a),x)

[Out]

Integral(sqrt(d + e*x**2)/(x**3*(a + b*x**2 + c*x**4)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^(1/2)/x^3/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

sage0*x

________________________________________________________________________________________

Mupad [B]
time = 5.46, size = 2500, normalized size = 6.54 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x^2)^(1/2)/(x^3*(a + b*x^2 + c*x^4)),x)

[Out]

(atan((((a*e - 2*b*d)*(((d + e*x^2)^(1/2)*(6*a^4*c^5*e^12 + 4*a^2*c^7*d^4*e^8 + 6*a^3*c^6*d^2*e^10 + 4*b^4*c^5
*d^4*e^8 + 21*a^2*b^2*c^5*d^2*e^10 - 18*a^3*b*c^5*d*e^11 - 8*a*b^2*c^6*d^4*e^8 - 12*a*b^3*c^5*d^3*e^9))/(2*a^4
) - (((16*a^5*b*c^4*e^12 + 20*a^5*c^5*d*e^11 + a^3*b^5*c^2*e^12 - 8*a^4*b^3*c^3*e^12 + 20*a^4*c^6*d^3*e^9 + 40
*a^2*b^3*c^5*d^4*e^8 - 20*a^2*b^4*c^4*d^3*e^9 - 27*a^2*b^5*c^3*d^2*e^10 - 20*a^3*b^2*c^5*d^3*e^9 + 84*a^3*b^3*
c^4*d^2*e^10 - 8*a*b^5*c^4*d^4*e^8 + 6*a*b^6*c^3*d^3*e^9 + 2*a*b^7*c^2*d^2*e^10 - 3*a^2*b^6*c^2*d*e^11 - 32*a^
3*b*c^6*d^4*e^8 + 28*a^3*b^4*c^3*d*e^11 - 36*a^4*b*c^5*d^2*e^10 - 68*a^4*b^2*c^4*d*e^11)/a^4 - ((a*e - 2*b*d)*
(((d + e*x^2)^(1/2)*(240*a^6*b*c^4*e^11 + 64*a^6*c^5*d*e^10 + 20*a^4*b^5*c^2*e^11 - 140*a^5*b^3*c^3*e^11 + 160
*a^5*c^6*d^3*e^8 - 32*a^2*b^6*c^3*d^3*e^8 + 32*a^2*b^7*c^2*d^2*e^9 + 224*a^3*b^4*c^4*d^3*e^8 - 208*a^3*b^5*c^3
*d^2*e^9 - 432*a^4*b^2*c^5*d^3*e^8 + 272*a^4*b^3*c^4*d^2*e^9 - 48*a^3*b^6*c^2*d*e^10 + 348*a^4*b^4*c^3*d*e^10
+ 224*a^5*b*c^5*d^2*e^9 - 648*a^5*b^2*c^4*d*e^10))/(2*a^4) - ((a*e - 2*b*d)*((128*a^8*c^4*e^11 + 8*a^6*b^4*c^2
*e^11 - 64*a^7*b^2*c^3*e^11 + 128*a^7*c^5*d^2*e^9 + 32*a^5*b^3*c^4*d^3*e^8 - 24*a^5*b^4*c^3*d^2*e^9 + 64*a^6*b
^2*c^4*d^2*e^9 - 256*a^7*b*c^4*d*e^10 - 8*a^5*b^5*c^2*d*e^10 - 128*a^6*b*c^5*d^3*e^8 + 96*a^6*b^3*c^3*d*e^10)/
a^4 - ((d + e*x^2)^(1/2)*(a*e - 2*b*d)*(1024*a^9*c^4*e^10 + 64*a^7*b^4*c^2*e^10 - 512*a^8*b^2*c^3*e^10 + 1536*
a^8*c^5*d^2*e^8 + 128*a^6*b^4*c^3*d^2*e^8 - 896*a^7*b^2*c^4*d^2*e^8 - 1792*a^8*b*c^4*d*e^9 - 128*a^6*b^5*c^2*d
*e^9 + 960*a^7*b^3*c^3*d*e^9))/(8*a^6*d^(1/2))))/(4*a^2*d^(1/2))))/(4*a^2*d^(1/2)))*(a*e - 2*b*d))/(4*a^2*d^(1
/2)))*1i)/(4*a^2*d^(1/2)) + ((a*e - 2*b*d)*(((d + e*x^2)^(1/2)*(6*a^4*c^5*e^12 + 4*a^2*c^7*d^4*e^8 + 6*a^3*c^6
*d^2*e^10 + 4*b^4*c^5*d^4*e^8 + 21*a^2*b^2*c^5*d^2*e^10 - 18*a^3*b*c^5*d*e^11 - 8*a*b^2*c^6*d^4*e^8 - 12*a*b^3
*c^5*d^3*e^9))/(2*a^4) + (((16*a^5*b*c^4*e^12 + 20*a^5*c^5*d*e^11 + a^3*b^5*c^2*e^12 - 8*a^4*b^3*c^3*e^12 + 20
*a^4*c^6*d^3*e^9 + 40*a^2*b^3*c^5*d^4*e^8 - 20*a^2*b^4*c^4*d^3*e^9 - 27*a^2*b^5*c^3*d^2*e^10 - 20*a^3*b^2*c^5*
d^3*e^9 + 84*a^3*b^3*c^4*d^2*e^10 - 8*a*b^5*c^4*d^4*e^8 + 6*a*b^6*c^3*d^3*e^9 + 2*a*b^7*c^2*d^2*e^10 - 3*a^2*b
^6*c^2*d*e^11 - 32*a^3*b*c^6*d^4*e^8 + 28*a^3*b^4*c^3*d*e^11 - 36*a^4*b*c^5*d^2*e^10 - 68*a^4*b^2*c^4*d*e^11)/
a^4 + ((a*e - 2*b*d)*(((d + e*x^2)^(1/2)*(240*a^6*b*c^4*e^11 + 64*a^6*c^5*d*e^10 + 20*a^4*b^5*c^2*e^11 - 140*a
^5*b^3*c^3*e^11 + 160*a^5*c^6*d^3*e^8 - 32*a^2*b^6*c^3*d^3*e^8 + 32*a^2*b^7*c^2*d^2*e^9 + 224*a^3*b^4*c^4*d^3*
e^8 - 208*a^3*b^5*c^3*d^2*e^9 - 432*a^4*b^2*c^5*d^3*e^8 + 272*a^4*b^3*c^4*d^2*e^9 - 48*a^3*b^6*c^2*d*e^10 + 34
8*a^4*b^4*c^3*d*e^10 + 224*a^5*b*c^5*d^2*e^9 - 648*a^5*b^2*c^4*d*e^10))/(2*a^4) + ((a*e - 2*b*d)*((128*a^8*c^4
*e^11 + 8*a^6*b^4*c^2*e^11 - 64*a^7*b^2*c^3*e^11 + 128*a^7*c^5*d^2*e^9 + 32*a^5*b^3*c^4*d^3*e^8 - 24*a^5*b^4*c
^3*d^2*e^9 + 64*a^6*b^2*c^4*d^2*e^9 - 256*a^7*b*c^4*d*e^10 - 8*a^5*b^5*c^2*d*e^10 - 128*a^6*b*c^5*d^3*e^8 + 96
*a^6*b^3*c^3*d*e^10)/a^4 + ((d + e*x^2)^(1/2)*(a*e - 2*b*d)*(1024*a^9*c^4*e^10 + 64*a^7*b^4*c^2*e^10 - 512*a^8
*b^2*c^3*e^10 + 1536*a^8*c^5*d^2*e^8 + 128*a^6*b^4*c^3*d^2*e^8 - 896*a^7*b^2*c^4*d^2*e^8 - 1792*a^8*b*c^4*d*e^
9 - 128*a^6*b^5*c^2*d*e^9 + 960*a^7*b^3*c^3*d*e^9))/(8*a^6*d^(1/2))))/(4*a^2*d^(1/2))))/(4*a^2*d^(1/2)))*(a*e
- 2*b*d))/(4*a^2*d^(1/2)))*1i)/(4*a^2*d^(1/2)))/(((a^3*c^5*e^13)/2 + a*c^7*d^4*e^9 - 2*b*c^7*d^5*e^8 + (3*a^2*
c^6*d^2*e^11)/2 + 2*b^2*c^6*d^4*e^9 - 4*a*b*c^6*d^3*e^10 - (3*a^2*b*c^5*d*e^12)/2 + a*b^2*c^5*d^2*e^11)/a^4 -
((a*e - 2*b*d)*(((d + e*x^2)^(1/2)*(6*a^4*c^5*e^12 + 4*a^2*c^7*d^4*e^8 + 6*a^3*c^6*d^2*e^10 + 4*b^4*c^5*d^4*e^
8 + 21*a^2*b^2*c^5*d^2*e^10 - 18*a^3*b*c^5*d*e^11 - 8*a*b^2*c^6*d^4*e^8 - 12*a*b^3*c^5*d^3*e^9))/(2*a^4) - (((
16*a^5*b*c^4*e^12 + 20*a^5*c^5*d*e^11 + a^3*b^5*c^2*e^12 - 8*a^4*b^3*c^3*e^12 + 20*a^4*c^6*d^3*e^9 + 40*a^2*b^
3*c^5*d^4*e^8 - 20*a^2*b^4*c^4*d^3*e^9 - 27*a^2*b^5*c^3*d^2*e^10 - 20*a^3*b^2*c^5*d^3*e^9 + 84*a^3*b^3*c^4*d^2
*e^10 - 8*a*b^5*c^4*d^4*e^8 + 6*a*b^6*c^3*d^3*e^9 + 2*a*b^7*c^2*d^2*e^10 - 3*a^2*b^6*c^2*d*e^11 - 32*a^3*b*c^6
*d^4*e^8 + 28*a^3*b^4*c^3*d*e^11 - 36*a^4*b*c^5*d^2*e^10 - 68*a^4*b^2*c^4*d*e^11)/a^4 - ((a*e - 2*b*d)*(((d +
e*x^2)^(1/2)*(240*a^6*b*c^4*e^11 + 64*a^6*c^5*d*e^10 + 20*a^4*b^5*c^2*e^11 - 140*a^5*b^3*c^3*e^11 + 160*a^5*c^
6*d^3*e^8 - 32*a^2*b^6*c^3*d^3*e^8 + 32*a^2*b^7*c^2*d^2*e^9 + 224*a^3*b^4*c^4*d^3*e^8 - 208*a^3*b^5*c^3*d^2*e^
9 - 432*a^4*b^2*c^5*d^3*e^8 + 272*a^4*b^3*c^4*d^2*e^9 - 48*a^3*b^6*c^2*d*e^10 + 348*a^4*b^4*c^3*d*e^10 + 224*a
^5*b*c^5*d^2*e^9 - 648*a^5*b^2*c^4*d*e^10))/(2*a^4) - ((a*e - 2*b*d)*((128*a^8*c^4*e^11 + 8*a^6*b^4*c^2*e^11 -
 64*a^7*b^2*c^3*e^11 + 128*a^7*c^5*d^2*e^9 + 32*a^5*b^3*c^4*d^3*e^8 - 24*a^5*b^4*c^3*d^2*e^9 + 64*a^6*b^2*c^4*
d^2*e^9 - 256*a^7*b*c^4*d*e^10 - 8*a^5*b^5*c^2*d*e^10 - 128*a^6*b*c^5*d^3*e^8 + 96*a^6*b^3*c^3*d*e^10)/a^4 - (
(d + e*x^2)^(1/2)*(a*e - 2*b*d)*(1024*a^9*c^4*e^10 + 64*a^7*b^4*c^2*e^10 - 512*a^8*b^2*c^3*e^10 + 1536*a^8*c^5
*d^2*e^8 + 128*a^6*b^4*c^3*d^2*e^8 - 896*a^7*b^...

________________________________________________________________________________________